Books+ Search Results

Interface science and composites

Title
Interface science and composites / Soo-Jin Park and Min-Kang Seo.
ISBN
9780080963488
008096348X
9780123750495
0123750490
Edition
1st ed.
Published
Amsterdam : Academic Press, 2011.
Physical Description
1 online resource (xviii, 834 pages) : illustrations (some color).
Local Notes
Access is available to the Yale community.
Access and use
Access restricted by licensing agreement.
Variant and related titles
Elsevier ScienceDirect All Books. OCLC KB.
Format
Books / Online
Language
English
Added to Catalog
May 17, 2018
Series
Interface science and technology ; v. 18.
Interface science and technology, v. 18
Bibliography
Includes bibliographical references and index.
Contents
Note continued: 2.2. Structure and Chemical Composition of Solid Surfaces
2.3. Adsorption Isotherms
2.3.1. IUPAC Classification of Adsorption Isotherms
2.3.2. Langmuir Isotherm
2.3.3. Brunauer-Emmett-Teller (BET) Isotherm
2.4. Measurement of Adsorption Isotherms
2.4.1. Gravimetric Measurement
2.4.2. Volumetric Measurement
2.4.2.1. Pressure Swing Adsorption (PSA)
2.4.2.2. Temperature Swing Adsorption (TSA)
2.4.3. Gas Chromatography Mesurement
2.5. Infinite and Finite Concentration
2.5.1. Solid-gas Interaction at Infinite Dilution
2.5.1.1. Adsorption Gibbs free energy
2.5.1.2. London Dispersive Component
2.5.1.3. Acid-Base Component
2.5.2. Solid-Gas Interaction at a Finite Concentration
2.5.2.1. Equilibrium Spreading Pressure and Surface Free Energy
2.5.2.2. Inverse Gas Chromatography at a Finite Concentration
2.6. Summary
References
3. Solid-Liquid Interaction
3.1. Introduction
3.2. Surface Energetics.
Note continued: 3.3. Contact Angle and Surface Tension
3.3.1. Sessile Drop as a Force Balance
3.3.2. Spreading Pressure
3.3.3. Hysteresis of Contact Angle Measurement
3.3.4. Surface Energy Measurements
3.3.4.1. One-liquid Tensiometric Method
3.3.4.2. Two-liquid Tensiometric Method
3.3.4.3. Three-liquid Tensiometric Method
3.3.5. Contact Angle Measurements
3.3.5.1. Tilting Plate Method
3.3.5.2. Wicking Method
3.3.5.3. Sessile Drop Method
3.3.5.4. Atomic Force Microscopy Method
3.3.6. Surface Tension Parameters of Liquids and Solids
3.3.6.1. Apolar Liquids
3.3.6.2. Polar Liquids
3.3.6.3. Synthetic Polymers
3.3.7. Solubility
3.3.7.1. Cohesive Energy
3.3.7.2. Solubility Parameter
3.3.7.3. Expanded Solubility Parameters
3.3.8. Surface Treatments
3.3.8.1. Wet Treatments
3.3.8.2. Dry Treatments
3.4. Associated Phenomena and Applications
3.4.1. Electrostatic Forces
3.4.1.1. Electric Double Layer.
Note continued: 3.4.1.2. Charged Surface in Water
3.4.1.3. Charged Surfaces in Electrolyte
3.4.1.4. Applications
3.4.2. Self-Assembling Systems
3.4.2.1. Thermodynamic Equations of Self-assembly
3.4.2.2. Formation of Different Aggregates
3.4.2.3. Critical Micelle Concentration
3.4.2.4. Phase Separation Versus Micellization
3.4.2.5. Applications
3.5. Summary
References
4. Solid-Solid Interfaces
4.1. Introduction
4.2. Adhesion at Solid-Solid Interfaces
4.2.1. Theories of Adhesion
4.2.2. Contribution of Thermodynamic Adsorption to Adhesion
4.2.3. Free Energies and Work of Adhesion
4.3. London Dispersion and Acid-Base Interaction
4.3.1. London Dispersion Force
4.3.1.1. Quantum mechanical theory of dispersion force
4.3.2. Acid-Base Interactions
4.3.2.1. Introduction
4.3.2.2. Hydrogen Bonding
4.3.2.3. Work of Adhesion
4.3.2.4. Drago's Approach
4.3.2.5. Gutmann's Numbers
4.3.2.6. Approaches of van Oss, Good, and Chaudhury.
Note continued: 4.3.2.7. IR spectroscopic tools to access acid-base strength
4.3.2.8. Density of interacting sites
4.4. Mechanisms of Adhesion
4.4.1. Mechanical Interlocking
4.4.2. Electronic Theory
4.4.3. Theory of Weak Boundary Layers
4.4.4. Diffusion Theory
4.4.5. Intermolecular Bonding
4.4.6. Characterization of Adhesion
4.5. Adhesive Control
4.5.1. Non-deformable Solid Interfaces in Various Conditions
4.5.1.1. In vacuum
4.5.1.2. Forces due to capillary condensation
4.5.1.3. Non-deformable solids in condensable vapor
4.5.2. Deformable Solids
4.5.2.1. Hertz
4.5.2.2. Johnson, Kendall, and Roberts (JKR)
4.5.2.3. Derjaguin, Muller, and Toporov (DMT)
4.5.2.4. Maugis and Dugdale
4.5.2.5. Muller, Yushchenko, and Derjaguin (MYD)/Burgess, Hughes, and Whit (BHW)
4.5.2.6. Liquid bridge
4.6. Adhesive Behaviors at Interfaces
4.6.1. Introduction
4.6.2. Particular Composites
4.6.3. Effect of Interfaces.
Note continued: 4.6.4. Crack Meeting and Interfaces
4.6.5. Crack Resistance of Composites
4.6.5.1. Fracture theory
4.6.5.2. Stress analysis of cracks
4.6.5.3. Stress intensity factor
4.6.5.4. Critical strain energy release rate
4.6.5.5.J-integral
4.6.5.6. Experimental data and applications
4.6.6. Delamination at Interfaces
4.6.7. Bending and Compression
4.6.8. Adhesion of Fibers in Composites
4.7. Summary
References
5. Interfacial Applications in Nanomaterials
5.1. Introduction
5.2. Energy Storage and Conversion Devices
5.2.1. Dye-sensitized Solar Cells
5.2.2. Lithium-Ion Batteries
5.2.3. Supercapacitors
5.3. Environmental Technologies
5.3.1. NOx and SOx Removals
5.3.1.1. Pollution Problems
5.3.1.2. Emission Regulation
5.3.1.3. NOx and SOx Storage and Reduction
5.3.1.4. Carbonaceous Materials
5.3.2. Water Purification
5.4. Gas Storage
5.4.1. Introduction
5.4.2. Hydrogen
5.4.2.1. Metal Hydrides.
Note continued: 5.4.2.2. Carbohydrates
5.4.2.3. Metal-organic Frameworks
5.4.2.4. Carbon Materials
5.4.2.5. Mechanism
5.4.3. Carbon Dioxide Adsorption
5.5. Bio Technologies
5.5.1. Delivery Systems for Food and Drug Products
5.5.1.1. Oil-in-water Emulsion
5.5.1.2. Solid-lipid Nanoparticles
5.5.1.3. Molecular Complexes
5.5.1.4. Self-assembly Delivery Systems
5.5.2. Cosmetics
5.5.2.1. Anti-aging
5.5.2.2. UV Protection
5.5.3. Adhesion for Biological Cells
5.6. Carbon Nanotubes-based Composite Materials
5.6.1. Role of Reinforcement
5.6.2. Electromagnetic Interference Shielding Properties
5.6.3. Optical Properties
5.7. The Versatile Properties of Graphene
5.8. Summary
References
6. Element and Processing
6.1. Introduction
6.2. Reinforcements
6.2.1. Carbon Fibers
6.2.1.1. Introduction
6.2.1.2. Structures
6.2.1.3. Production processes
6.2.1.4. Surface treatment
6.2.1.5.Commercial products
6.2.2. Glass Fibers.
Note continued: 6.2.3. Aramid Fibers
6.2.4. Ultra-high-molecular-weight Polyethylene
6.2.5. Ceramic Fibers
6.2.6. Boron Fibers
6.2.7. Metal Fibers
6.2.8. Particulates (Fillers)
6.2.9. Reinforcement Forms
6.2.9.1. Multi-end and single-end rovings
6.2.9.2. Mats
6.2.9.3. Woven, stitched, braided fabrics
6.2.9.4. Unidirectional
6.2.9.5. Prepreg
6.3. Matrices
6.3.1. Polymer Matrices
6.3.1.1. Thormosel resins
6.3.1.2. Thermoplastic resins
6.3.2. Metal Matrices
6.3.2.1. Aluminum (Al)
6.3.2.2. Magnesium (Mg)
6.3.2.3. Titanium (Ti)
6.3.3. Ceramic Matrices
6.3.3.1. Horosilicate glass
6.3.3.2. Silicon carbide (SiC)
6.3.3.3. Aluminum oxide (Al2O3)
6.4. Fabrication Process of Composites
6.4.1. Hand Lay-up Molding
6.4.1.1. Laminate materials
6.4.1.2. Surface preparation and bonding
6.4.1.3. Laminate construction
6.4.1.4. Multiply Construction
6.4.2. Spray-up Molding.
Note continued: 6.4.3.Compression Molding, Transfer Molding and Resin Transfer Molding
6.4.4. Injection Molding
6.4.5. Reaction Injection Molding
6.4.6. Pultrusion
6.4.7. Filament Winding
6.5. Applications of Composites
6.5.1. Sports
6.5.2. Aircraft
6.5.3. Auto-mobile Parts
6.5.4. Infrastructures
6.6. Summary
References
7. Types of Composites
7.1. Introduction
7.2. Polymer Matrix Composites
7.2.1. Introduction
7.2.2. High Performance Fiber Technology
7.2.2.1. High-performance carbon fibers
7.2.2.2. High-performance organic fibers
7.2.3. High Performance Matrix Resins
7.2.4. Fiber-Matrix Interface
7.2.4.1. Definition of fiber-matrix interface
7.2.4.2. Mechanical interfacial properties of composites
7.2.5. Development of Composite System
7.3. Carbon Matrix Composites
7.3.1. Introduction
7.3.2. Structure of Carbon/Carbon Composites
7.3.3. Oxidation Behavior and Coating Protection of Carbon/Carbon Composites.
Note continued: 7.3.3.1. Oxidation kinetic and mechanism
7.3.3.2. Coating
7.3.3.3.Complex systems and multilayer coatings
7.3.3.4.Composite coatings
7.3.3.5. Protection with the use of an inert gas
7.3.3.6. Oxidation through coating cracks
7.3.4. Densification
7.3.4.1. Resin transfer molding of carbon/carbon performs
7.3.4.2. Stabilization
7.3.4.3. Chemical vapor infiltration of carbon/carbon preforms
7.3.4.4. Coal-tar and petroleum pitches
7.3.4.5. Thermoset resins
7.3.4.6. Densification efficiency
7.3.5. One-step Manufacturing of Carbon/Carbon Composites with High Density and Oxidative Resistance
7.3.6. Applications of Carbon/Carbon Composites
7.4. Metal Matrix Composites
7.4.1. Introduction
7.4.2.Combination of Materials for Light Metal Matrix Composites
7.4.2.1. Reinforcements
7.4.2.2. Matrix alloy systems
7.4.3. Production and Processing of Metal Matrix Composites
7.4.4. Mechanism of Reinforcement.
Note continued: 7.4.5. Influence of Interface
7.4.5.1. Basics of wettability and infiltration
7.4.6. Properties of Metal Matrix Composites
7.4.7. Possible Applications of Metal Matrix Composites
7.4.7.1. Automobile products
7.4.7.2. Space system
7.4.8. Recycling
7.5. Ceramic Matrix Composites
7.5.1. Introduction
7.5.2. Reinforcements
7.5.3. Structure and Properties of Fibers
7.5.3.1. Fiber structure
7.5.3.2. Structure formation
7.5.3.3. Structure parameters and fiber properties
7.5.4. Inorganic Fibers
7.5.4.1. Production processes
7.5.4.2. Properties of commercial products
7.5.5. Properties and Applications of Ceramic Matrix Composites
7.6. Summary
References
8.Composite Characterization
8.1. Introduction
8.2. Evaluation of Reinforcement Fibers
8.2.1. Introduction
8.2.2. Chemical Techniques
8.2.2.1. Elemental analysis
8.2.2.2. Titration
8.2.2.3. Fiber structure
8.2.2.4. Fiber surface chemistry.
Note continued: 8.2.2.5. Sizing content and composition
8.2.2.6. Moisture content
8.2.2.7. Thermal stability and oxidative resistance
8.2.3. Physical Techniques
8.2.3.1. Filament diameter
8.2.3.2. Density of fibers
8.2.3.3. Electrical resistivity
8.2.3.4. Coefficient of thermal expansion
8.2.3.5. Thermal conductivity
8.2.3.6. Specific heat
8.2.3.7. Thermal transition temperatures
8.2.4. Mechanical Testing of Fibers
8.2.4.1. Tensile properties
8.3. Evaluation of Matrix Resins
8.3.1. Introduction
8.3.2. Preparation of Matrix Specimen
8.3.2.1. Thermoset polymers
8.3.2.2. Thermoplastic polymers
8.3.2.3. Specimen machining
8.3.3. Chemical Analysis Techniques
8.3.3.1. Elemental analysis
8.3.3.2. Functional group and wet chemical analysis
8.3.3.3. Spectroscopic analysis
8.3.3.4. Chromatographic analysis
8.3.3.5. Molecular weight and molecular weight distribution analysis
8.3.4. Thermal and Physical Analysis Techniques.
Note continued: 8.3.4.1. Thermal analysis
8.3.4.2. Rheological analysis
8.3.4.3. Morphology
8.3.4.4. Volatiles content
8.3.4.5. Moisture content
8.4. Evaluation of Reinforcement-Matrix Interface
8.4.1. Introduction
8.4.2. Wettability
8.4.3. Interfacial Bonding
8.4.3.1. Mechanical bonding
8.4.3.2. Electrostatic bonding
8.4.3.3. Chemical bonding
8.4.3.4. Reaction or interdiffusion bonding
8.4.4. Methods for Measuring Bond Strength
8.4.4.1. Single fiber tests
8.4.4.2. Bulk specimen tests
8.4.4.3. Micro-indentation tests
8.5. Evaluation of Composites
8.5.1. Introduction
8.5.2. Factors Determining the Properties
8.5.3. Principal Coordinate Axes
8.5.4. Density
8.5.4.1. Dry bulk density
8.5.4.2. Density by water displacement (Archimedean density)
8.5.5. Determination of Fiber Content
8.5.6. Coefficient of Thermal Expansion
8.5.6.1. Dilatometer
8.5.7. Thermal Conductivity
8.5.7.1.Comparative method
8.5.8. Specific Heat.
Note continued: 8.5.8.1. Differential scanning calorimetry
8.5.9. Electrical Resistivity
8.5.9.1. Four-point probe measurements
8.5.10. Thermal Cycling
8.5.11. Tensile Modulus
8.5.12. Tensile Strength
8.5.13. Shear Strength
8.5.13.1. Interlaminar shear strength
8.5.13.2. In-plane shear tests
8.5.14. Flexural Strength and Modulus
8.5.15. Uniaxial Compressive Strength and Modulus
8.5.16. Fatigue
8.5.17. Creep
8.5.18. Impact Behaviors
8.5.19. Fracture Toughness
8.6. Relationship between Surface and Mechanical Interfacial Properties in Composites
8.6.1. Surface Free Energy and Work of Adhesions
8.6.2. Surface Free Energy Analysis using a Linear Fit Method
8.6.3. Surface Free Energy and Fractural Properties
8.6.4. Mechanical Approach
8.6.5. Energetic Approach
8.6.6. Weibull Distribution
8.6.7. Experimental Results of Composites
8.6.7.1. Single fiber tensile strength
8.6.7.2. Weibull distribution parameter.
Note continued: 8.6.7.3. Pull-out behaviors and apparent shear strength
8.7. Evaluation of Laminated Composites
8.7.1. Introduction
8.7.2. Analysis of Laminated Composites
8.7.3. Numerical Illustration
8.8. Nondestructive Testing of Composites
8.8.1. Introduction
8.8.2. Techniques for Evaluating of Properties and Defects of Composites
8.8.2.1. Typical defects of composites
8.8.2.2. Nondestructive evaluation
8.9. Summary
References
9. Modeling of Fiber-Matrix Interface in Composite Materials
9.1. Introduction
9.2. Evaluation of Fiber-Matrix Interfacial Shear Strength and Fracture Toughness
9.2.1. Microscopical Geometric Analysis of Fiber Distributions in Unidirectional Composites
9.2.2. Measurement of Interfacial Shear Strength
9.2.3. Measurement of Interfacial Fracture Toughness
9.3. Interpretation of Single-Fiber Pull-out Test
9.3.1. Early Observations of Single-Fiber Pull-out Test.
Note continued: 9.3.2. Calculation of Single-Fiber Pull-out Test
9.3.3. Incorporation of Crack Propagation in the Evaluation of Single-Fiber Pull-out Test
9.3.4. Change of Fiber Diameter with Tensile Load
9.3.5. Fracture Mechanics of Single-Fiber Pull-out Test
9.3.6. Relationship Between Debonding Stress and Embedded Length
9.3.7. Stress Transfer from Matrix to Fibers
9.4. Interpretation of Single-Fiber Push-out Test
9.5. Interpretation of Single-Fiber Fragmentation Test
9.6. Fiber-Matrix Adhesion from Single-Fiber Composite Test
9.7. Micromechanical Modeling of Microbond Test
9.8. Interphase Effect on Fiber-Reinforced Polymer Composites
9.8.1. Introduction
9.8.2. Three-Phase Bridging Model
9.8.3. Finite-Element Model
9.9. Summary
References
10.Comprehension of Nanocomposites
10.1. Introduction
10.2. Types of Nanocomposites
10.2.1. Nanoparticle-Reinforced Composites
10.2.2. Nanoplatelet-Reinforced Composites.
Note continued: 10.2.3. Nanofibers-Reinforced Composites
10.2.4. Carbon Nanotube-Reinforced Composites
10.2.4.1. Introduction
10.2.4.2. Properties of Carbon Nanotube-Polymer Composites
10.2.4.3. Interfaces of Carbon Nanotube-Polymer Composites
10.2.5. Graphene-Based Composite Materials
10.2.5.1. Introduction
10.2.5.2. Properties of Graphene
10.2.5.3. Surface Treatment of Graphene
10.2.5.4. Graphene-Polymer Nanocomposites
10.3. Processing of Nanocomposites
10.3.1. Introduction
10.3.2. Solution Processing of Carbon Nanotube and Polymer
10.3.3. Bulk Mixing
10.3.4. Melt Mixing
10.3.5. In Situ Polymerization
10.4. Characterization of Nanocomposites
10.5. Summary
References.
Also listed under
Citation

Available from:

Online
Loading holdings.
Unable to load. Retry?
Loading holdings...
Unable to load. Retry?