Librarian View

LEADER 05673cam a22005175i 4500
001 13915206
005 20200729071822.0
006 m o d
007 cr nn 008mamaa
008 121227s1976 xxu| o |||| 0|eng d
020
  
  
|a 9781461342687
024
7
  
|a 10.1007/978-1-4613-4268-7 |2 doi
035
  
  
|a (DE-He213)978-1-4613-4268-7
035
  
  
|a 13915206
050
  
4
|a TA459-492
082
0
4
|a 620.16 |2 23
100
1
  
|a Blatt, Frank J. |4 aut |4 http://id.loc.gov/vocabulary/relators/aut |0 http://id.loc.gov/authorities/names/n80030559
245
1
0
|a Thermoelectric Power of Metals |h [electronic resource] / |c by Frank J. Blatt, Peter A. Schroeder, Carl L. Foiles, Denis Greig.
264
  
1
|a Boston, MA : |b Springer US, |c 1976.
300
  
  
|a 1 online resource (XVI, 264 p.)
336
  
  
|a text |b txt |2 rdacontent
337
  
  
|a computer |b c |2 rdamedia
338
  
  
|a online resource |b cr |2 rdacarrier
347
  
  
|a text file |b PDF |2 rda
505
0
  
|a 1. Introduction -- 1.1 Seebeck, Peltier, and Thomson Effects -- 1.2 Transport Coefficients and Onsager Relations -- 2. Survey of the Theory of Electronic Conduction in Metals -- 2.1 Electrons in Metals -- 2.2 Transport Properties -- 2.3 Relaxation Time Anisotropy for Spherical Fermi Surfaces -- 2.4 Thermopower: Isotropic Relaxation Time Approximation -- 2.5 Thermopower: Real Metals -- 2.6 Phonon Drag -- 2.7 Thermopower of Alloys -- 3. Techniques in Thermoelectric Measurements -- 3.1 Introduction -- 3.2 Seebeck Effect -- 3.3 Peltier Effect -- 3.4 Thomson Effect: The Absolute Thermopower of Lead -- 3.5 Measurement of Unconventional Thermoelectric Coefficients -- 3.6 Measurement of Temperature and of Small Voltages -- 3.7 Superconducting Devices -- 4. Phonon Drag -- 4.1 Introduction and General Relations -- 4.2 Sg at High Temperatures -- 4.3 Sg at Low Temperatures -- 4.4 Anisotropy of Relaxation Times and Phonon-Drag Thermopower -- 4.5 Sg at Intermediate Temperatures -- 4.6 Sg of Alloys -- 4.7 Phonon Drag or Phony Phonon Drag? -- 5. The Thermoelectric Power of Transition Metals -- 5.1 Special Problems in Transition Metals -- 5.2 The Diffusion Thermopower of Transition Metals -- 5.3 The Phonon-Drag Thermopower of Transition Metals -- 5.4 Magnon Drag -- 5.5 Transition Elements: Summary of Experimental Results -- 5.6 Commercial Thermocouples -- 6. Dilute Magnetic Alloys -- 6.1 Introduction -- 6.2 The Virtual Bound State -- 6.3 Kondo Alloys -- 6.4 Spin-Fluctuation Models -- 6.5 Closing Comment -- 7. Effects of Pressure and Magnetic Field on the Thermoelectric Power -- 7.1 Pressure Dependence -- 7.2 Magnetic Field Dependence -- References -- Author Index.
506
  
  
|a Access restricted by licensing agreement.
520
  
  
|a Thermoelectric and related transport properties of metals have been a source of information and, also, exasperation to physicists for over a century. Perhaps the principal reasons for interest in these phenomena are their sensitivity to composition, structure and external fields and, until fairly recently, the distressing fact that often even gross experimental features such as the sign of the thermopower eluded theoretical understanding. During the past two decades many of the previously perplexing aspects of thermoelectricity have yielded to more sophisticated theoretical treat­ ment. As a result of this effort and concomitant experimental work using advanced measurement techniques, there is now good reason to believe that thermoelectric phenomena can shed much light on the interactions between electrons and phonons, impurities, and other defects. The last few years have witnessed new and fascinating developments that promise to stimulate new activity in this field. In contrast to the more conventional transport properties, second-and high-order contributions in electron scattering theory appear to play a profound role in thermoelectricity-the controversy surrounding ordinary and "phony" phonon drag is far from resolved; the startlingly large effect of magnetic fields on the thermopower of metals appears to be linked intimately to scattering anisotropy; quantum oscillations of thermopower are orders of magnitude larger than corresponding oscillations of the magnetoresistance; a new approach to thermoelectric studies allows extension of thermopower measurements into the millikelvin region of temperature; finally, the advent of superconducting detection devices permits the precise measurement of extremely small voltages, an essential requirement in this field.
590
  
  
|a Access is available to the Yale community.
650
  
0
|a Materials. |0 http://id.loc.gov/authorities/subjects/sh85082065
700
1
  
|a Schroeder, Peter A. |4 aut |4 http://id.loc.gov/vocabulary/relators/aut |0 http://id.loc.gov/authorities/names/n78016486
700
1
  
|a Foiles, Carl L. |4 aut |4 http://id.loc.gov/vocabulary/relators/aut
700
1
  
|a Greig, Denis. |4 aut |4 http://id.loc.gov/vocabulary/relators/aut |0 http://id.loc.gov/authorities/names/n90652356
710
2
  
|a SpringerLink (Online service) |0 http://id.loc.gov/authorities/names/no2005046756
730
0
  
|a Springer ENIN.
773
0
  
|t Springer eBooks
776
0
8
|i Printed edition: |z 9781461342700
776
0
8
|i Printed edition: |z 9780306309076
776
0
8
|i Printed edition: |z 9781461342694
852
8
0
|z Online resource
856
4
0
|y Online book |u https://yale.idm.oclc.org/login?URL=https://doi.org/10.1007/978-1-4613-4268-7
901
  
  
|a TA459-492
902
  
  
|a Yale Internet Resource |b Yale Internet Resource >> None|DELIM|13927404
905
  
  
|a online resource
907
  
  
|a 2019-01-23T14:10:38.000Z
946
  
  
|a DO NOT EDIT. DO NOT EXPORT.
953
4
0
|a https://doi.org/10.1007/978-1-4613-4268-7