Books+ Search Results

3d Printing in Medicine

Title
3d Printing in Medicine.
ISBN
9780081007266
0081007264
9780081007174
0081007175
Publication
[Place of publication not identified] : Woodhead Pub Ltd, 2017.
Copyright Notice Date
©2017
Physical Description
1 online resource (226 pages)
Local Notes
Access is available to the Yale community.
Access and use
Access restricted by licensing agreement.
Summary
This book examines the emerging market of 3D-printed biomaterials and its clinical applications. It focuses on commercial and premarket tools, and looks at applications within medicine and the future outlook for the field. It includes the fundamentals of 3D printing, including topics such as materials, and hardware; 3D printing applications within medicine; and 3D printing in diagnostics and drug development and for disease models, plus 3D printers for surgical practice.
Variant and related titles
Kalaskar, Deepak M.
Serra, Tiziano
O'Reilly Safari. OCLC KB.
Other formats
Print version: 3d Printing in Medicine. Woodhead Pub Ltd 2017
Format
Books / Online
Language
English
Added to Catalog
August 28, 2023
Series
Woodhead Publishing series in biomaterials.
Woodhead Publishing series in biomaterials
Bibliography
Includes bibliographical references and index.
Contents
Front Cover; 3D Printing in Medicine; Copyright Page; Contents; List of contributors; 1 Introduction to 3D printing in medicine; 1.1 3D printing is the latest industrial revolution; 1.1.1 Brief history of 3D printing; 1.1.2 Basic components of 3D printing; 1.2 3D bioprinting in medicine; 1.2.1 3D bioprinting approaches; 1.2.1.1 Biomimicry; 1.2.1.2 Independent self-assembly; 1.2.1.3 Miniature-tissue blocks; 1.2.2 Feasibility of organ printing technology; 1.2.3 In vivo behavior of 3D printed organ constructs; 1.3 Advantages of 3D printing for medicine.
1.3.1 Applications of 3D printing in medicine1.3.1.1 3D printing for surgical templates and diagnostic tools; 1.3.1.2 Organ printing technology; 1.3.1.3 3D disease modeling; 1.3.1.4 3D printing for commercial pharmaceutical products; 1.3.1.5 4D Bioprinting; 1.3.2 Limitations and challenges of 3D printing; 1.4 Future of 3D printing in medicine; References; 2 3D printing families: laser, powder, nozzle based techniques; 2.1 Introduction; 2.2 Classification of 3D printing techniques; 2.2.1 Resin-based systems; 2.2.2 Powder-based systems; 2.2.3 Extrusion-based systems; 2.2.4 Droplet-based systems.
2.3 Conclusions and future trendsReferences; 3 Materials for 3D printing in medicine: metals, polymers, ceramics, hydrogels; 3.1 Introduction; 3.1.1 Biomaterials; 3.1.2 Biocompatibility of biomaterials; 3.2 Metals; 3.2.1 Conventional metals and their alloys; 3.2.1.1 Titanium and its alloys; 3.2.1.2 Stainless steel, other metals, and alloys; 3.2.2 Shape memory alloys; 3.2.3 Biodegradable metals; 3.3 Bio-ceramics and bioactive glasses; 3.3.1 Nondegradable bio-ceramics; 3.3.2 Biodegradable and bioactive ceramics and glasses; 3.4 Polymers; 3.5 Hydrogels; 3.5.1 Bioinks for 3D bioprinting.
3.5.2 Natural polymer derived hydrogels3.5.2.1 ECM derived hyrdogels; 3.5.2.2 Nonmammalian sources derived polysaccharides; 3.5.3 Synthetic polymer derived hydrogels; 3.6 Summary and outlook; Acknowledgments; References; 4 Computational analyses and 3D printed models: a combined approach for patient-specific studies; 4.1 Introduction; 4.2 Patient specific models: image reconstruction; 4.3 Patient specific models: 3D Manufacturing; 4.4 Computer simulations of patient specific cardiac models; 4.5 Patient specific models: the current regulatory perspective.
4.6 Future perspective of patient specific models in cardiovascular applicationsReferences; 5 Patient specific in situ 3D printing; 5.1 Patient specific 3D printing; 5.1.1 Personalized medicine; 5.1.2 Introduction to the technology: 3D printing in personalized medicine; 5.1.3 Patient specific 3D model creation and design of tissue/organs; 5.2 Current medical applications for 3D printing; 5.2.1 3D bioprinting of organs and tissues; 5.2.1.1 3D bioprinting in vitro; 5.2.1.2 In situ 3D bioprinting directly to the defect/wound site.
Subjects (Medical)
Biomedical Technology
Citation

Available from:

Online
Loading holdings.
Unable to load. Retry?
Loading holdings...
Unable to load. Retry?