New Arrivals Search Results

Antisense technology. Part B applications

Title
Antisense technology. Part B [electronic resource] : applications / edited by M. Ian Phillips.
ISBN
012182215X
9780121822156
1281011002
9781281011008
9786611011000
6611011005
0080496717
9780080496719
Published
San Diego : Academic Press, 2000.
Physical Description
1 online resource (xxxv, 647 pages, 8 unnumbered pages of plates) : illustrations (some color).
Local Notes
Access is available to the Yale community.
Notes
English.
Access and use
Access restricted by licensing agreement.
Summary
Antisense technology is the ability to manipulate gene expression within mammalian cells providing powerful experimental approaches for the study of gene function and gene regulation. For example, methods which inhibit gene expression permit studies probing the normal function of a specific product within a cell. Such methodology can be used in many disciplines such as pharmacology, oncology, genetics, cell biology, developmental biology, molecular biology, biochemistry, and neurosciences. This volume will be a truly important tool in biomedically-oriented research. The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with more than 300 volumes (all of them still in print), the series contains much material still relevant today-truly an essential publication for researchers in all fields of life sciences.
Variant and related titles
Elsevier ScienceDirect All Books. OCLC KB.
Format
Books / Online
Language
English
Added to Catalog
June 05, 2023
Series
Methods in enzymology ; v. 314.
Methods in enzymology ; v. 314
Bibliography
Includes bibliographical references and indexes.
Contents
Front Cover; Antisense Technology; Copyright Page; Table of Contents; Contributors to Volume 314; Preface; Volumes in Series; Section I: Antisense Receptor Targets; Chapter 1. In Vivo Modulation of G Proteins and Opioid Receptor Function by Antisense Oligodeoxynucleotides; Chapter 2. Targeting Brain GABAA Receptors with Antisense Oligonucleotides: Implications for Epilepsy; Chapter 3. Delivery of Antisense DNA by Vectors for Prolonged Effects in Vitro and in Vivo; Chapter 4. Antisense Mapping: Assessing Functional Significance of Genes and Splice Variants
Chapter 5. In Vitro and in Vivo Effects of Antisense on alpha2-Adrenoceptor ExpressionChapter 6. Design and Efficacy of a Serotonin-2A Receptor Antisense Oligodeoxynucleotide; Chapter 7. Reduction of Neurotransmitter Receptor and G-Protein Expression in Vivo and in Vitro by Antisense Oligodeoxynucleotide Treatment; Chapter 8. Use of Expression of Antisense mRNA for Convertases 1 and 2 in Prohormone Processing; Section II: Antisense Neuroscience Targets; Chapter 9. Strategies for the Design and Delivery of Antisense Oligonucleotides in Central Nervous System
Chapter 10. Use of Antisense Expression Plasmids to Attenuate G-Protein Expression in Primary NeuronsChapter 11. Gene Functional Analysis in Nervous System; Chapter 12. RNA Mapping: Selection of Potent Oligonucleotide Sequences for Antisense Experiments; Chapter 13. Effects of Centrally Administered Antisense Oligodeoxynucleotides on Feeding Behavior and Hormone Secretion; Chapter 14. Blockade of Neuropathic Pain by Antisense Targeting of Tetrodotoxin-Resistant Sodium Channels in Sensory Neurons; Chapter 15. Antisense Approach for Study of Cell Adhesion Molecules in Central Nervous System
Chapter 16. Sequence Design and Practical Implementation of Antisense Oligonucleotides in NeuroendocrinologyChapter 17. Localization of Oligonucleotides in Brain by in Situ Hybridization; Chapter 18. Use of Antisense Oligonucleotides in Human Neuronal and Astrocytic Cultures; Cnapter 19. Pharmacokinetic Properties of Oligonucleotides in Brain; Chapter 20. Antisense Oligonucleotides: Preparation and in Vivo Application to Rat Brain; Chapter 21. Application of Antisense Techniques to Characterize Neuronal Ion Channels in Vitro; Section III: Antisense in Nonneuronal Tissues
Chapter 22. Antisense Inhibition of Sodium-Calcium ExchangerChapter 23. Targeted Delivery of Antisense Oligonucleotides to Parenchymal Liver Cell in Vivo; Chapter 24. Antisense Methods for Discrimination of Phenotypic Properties of Closely Related Gene Products: Jun Kinase Family; Chapter 25. Evaluation of Biological Role of c-Jun N-Terminal Kinase Using an Antisense Approach; Chapter 26. Role of Antisense in Kidney Cells; Chapter 27. Use of Antisense Techniques in Rat Renal Medulla; Chapter 28. Antisense Approaches to in Vitro Organ Culture
Subjects (Medical)
Antisense Elements (Genetics) [MESH].
RNA, Antisense [MESH].
DNA, Antisense [MESH].
Also listed under
Citation

Available from:

Online
Loading holdings.
Unable to load. Retry?
Loading holdings...
Unable to load. Retry?